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What, why, and how?

What — a cost study for a power plant built around
four reactor concepts in the ALPHA program
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What, why, and how?

Why — estimate capital costs, assess sensitivities,
influence follow-on activities
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What, why, and how?

How — work with a power plant engineering and
design firm, augmented by consultants with fusion
expertise
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What do we mean when | say cost study?

Levelized lectricity

What we are doing

\ﬁl |)\.ﬂ 5

CHANGING WHAT'S POSSIBLE



What do we mean when | say cost study?

* Direct Capital Costs
- Fusion Power Cores
- Balance of Plant
- Tritium Extraction Plant

What we are doing
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What do we mean when | say cost study?

* Non-Capital Costs (limited)
- Operations and maintenance
- Tritium handling and recycling
- Waste disposal
- Decommissioning

What we are doing
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What do we mean when | say cost study?

* Excluding

Cost of capital / financing costs
Cost of start-up tritium inventory
Thermal-to-electric efficiency
Regulatory costs

Research and development costs

What we are doing
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Item total, as % of total project NPV

Across various fusion power plant designs studies, capital cost is the
largest contributor to total net present value

CTRI1]
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ARIES-ST[2] Z-IFE(3]

Incremental
capital
Construction

1 - Woodruff, S., Miller, R. “Cost Sensitivity Analysis for a 100 MWe modular power plant and fusion neutron source.” Fusion Design and Engineering(2015).

2 — Miller, R. “ARIES-ST design point selection.” Fusion Design and Engineering(2015).
3 — Meier, W., Moir, R. “Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06.” LANL (2006).
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Incremental
capital
Construction

ARIES-STI(2] Z-IFE[3] Nuclear [4] Coal [4] NCGG 4]

1 - Woodruff, S., Miller, R. “Cost Sensitivity Analysis for a 100 MWe modular power plant and fusion neutron source.” Fusion Design and Engineering(2015).
2 — Miller, R. “ARIES-ST design point selection.” Fusion Design and Engineering(2015).

3 — Meier, W., Moir, R. “Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06.” LANL (2006).

4 —Deutch, J., et al. “Update on the MIT 2003 Future of Nuclear Power.” Massachusetts Institute of Technology (2009).
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Calculating LCOE can be useful but is sensitive to parameters that are
unknown for fusion power plants
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Delays lead to
cost increases
(even if direct

capital remains
flat)

LCOE projections for PPCS-A design (Maisonnier, 2005) using costing information from Han, 2013. LCOE model adapted from MIT
spreadsheet model (2009).

Capacity = 1.55 GW, Specific Capital = $3,940 S/kW, Fixed O&M! = $65.8/kW/year, Var 0&M2 = 7.78 mills/kWh
1 - (includes DD costs); 2 - (includes waste disposal)
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Driving for a common methodology, approach, and balance of plant to
have roughly comparable results

A common balance of plant

Heat exchange

R
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Source: www.nerdtrek.com

Tritium extraction and A common tritium plant
recycling o

4 x fusion reactors
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Driving for a common methodology, approach, and balance of plant to
have roughly comparable results

A common balance of plant

Heat exchange

4 x fusion reactors

l | | | | | | | | | J
Source: www.nerdtrek.com

Tritium extraction and A common tritium plant
recycling R e =

How to find a common set
of inputs, boundary
conditions, and
constraints?
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What does a control volume look like for a generic fusion reactor?

Average Power In (P;,,)
Driver Efficiency (ng) I I
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What are the parameters and metrics that can link four distinct fusion
power cores to a common balance of plant?

Average Power In (P;,,)
Driver Efficiency (ng) I I
Energy in (Ej) I |

I I

Average Pulse Frequency (f)

5 _ Ejp*f |::[ :> :::>Avg. Thermal Output (P;;,)
I

Na

[
Fuel Input (D-T) 1
—>

QA
I I
Other Mass Exhaust
- Driver - Fusion Products
- Target - Unburned Fuel

- Waste

Key Parameters
Temperature (T)

lon Density (n;)
Confinement Time (1)
Tritium Fraction (TF)
Burnup Fraction (BF)
Mass Fuel (mg)
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Key Metrics
Thermal Output
Recirculating Power

**Note: Py, s does not equal P,,because

of exothermic reactions that may occurin
the blanket



What are the dependent variables, boundary conditions, and constraints
at play?

Average Power In (P;,,)
Driver Efficiency (ng) I I
Energy in (Ej) I |

| |

Average Pulse Frequency (f)
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Other Mass Exhaust
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Dependant Variable Constraints
Capital Cost Recirculating power

Thermal first wall loading
Neutron loading
Exhaust handling

Boundary Conditions
P4, = 500 MW
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Why Py, = 500 MW?

- Compatible across concepts for fusion power core

- Smaller size has favorable characteristics
- Lower-risk profile for investors
- Relevant and attractive to utilities
- Manufacturing/repetition rate

Thermal output vs. recirculating power?

- Limit parasitic loads, achieve sufficient net electrical capacity with
limited footprint

Fusion Reactor Power Plant I

v
|

P, net,e
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Constraint: First Wall Thermal Loading

- Challenge: Reactor should not exceed thermal loading envisioned first wall material and
design
- ITER — Enhanced Heat Flux Panels designed for 4.7 MW/m?2 [1]

Armor — Beryllium
Heat Sink — CuCrZr
Structure — Austenitic Steel

- ITER — Diverter Surface designed for time-averaged 10 MW/m?2, short durations up to 20

MW/m?2[2]
Armor - Tungsten
For the Cost Study:
y Pfus = 500 MW
- FW Loading =
- Geometry / size of reactor vessel should reflect wall 39.8 MW/m?

loading constraints.

- Dependency between material —thermal constraint —

geometry — cost P,.. = 500 MW
S _ . FW Loading =
- Liquid first walls can relax thermal loading constraint 4.4 MW/m?

> [1] — Mazul et. al, “Russian development of enhanced heat flux technologies for ITER first wall.” Fusion Engineering and Design (2012).
S i. ) I )\ a o . ] [2] — Merola et. al, “Engineering challenges and development of the ITER Blanket Systemand Divertor.” Fusion Engineering and Design (2015).
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Constraint: Neutronics / Neutron Shielding

- Duel objectives:
- Moderate fast (14.1 MeV) neutrons to thermal neutrons
- Protect structure, magnets, and pulsed power systems from neutron
damage

- Challenge: The “right way” to scatter and moderate 14.1 MeV
neutrons isn’t clear.

- Challenge: Neutron damage will require replacement of
components, magnets, and/or pulsed power system

- Recognize and quantify the impact that uncertain neutronic behavior might have on cost

- Dependency between shielding technology — cost — neutron damage — component
replacement costs

- Quantifying the uncertainty introduced by multiple shielding technologies and unknown
performance could be a positive outcome of the cost study
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Fuel cycle: there is not enough tritium (T) supply to burn without
breeding + recycling

T Consumption for 1 GWjs o
55.6 kg/yr [2]

— N
-

CANDU T-Stockpile

~ 20kg T Stockoile d CANDU T-Production
->tockprie decay 3.27 kg/yr[1
~_ ~1.1 kg/yr 8/yrI1l
I

XV =N 1 —Ni et al., “Tritium supply assessment for ITER and DEMOnstration power plant.” Fusion Engineering and Design, 88 (2013)
‘i( [)‘i ° f\e/] 2 —Sawan, M. and Abdou, M., “Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle.”fdsion

, Engineering and Design, 81 (2006)
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As currently conceived, Tritium Extraction Plants are large chemical
processes
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How will technology evolve? Commodity part of BOP, or as large, one-off,
expensive subsystems? ALPHA project teams will benefit from mainline R&D.

Source: M. Gugla et al.
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What does the domestic generating fleet look like, and what might Fusion
displace / replace?
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How much of the fleet currently operating as baseload year-round (CF >
70%) ?
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In 2015-2016, conversions and retirements of coal-fired power plants
were driven by EPA Policy

Conversions and Retirements of Coal
Power Plants in U.S. 2011-2020
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Burn Rate (BR) and Tritium Breeding Ratio (TBR) are two important
parameters for self-sufficiency

Larger Tritium Breeding Ratios will A large Burn-up Fraction requires a
make-up for losses and produce excess smaller tritium inventory on hand
fuel for ne reactors

Tbred BF = Tburnt

Tburnt Tburnt + Trecycle

TBR =

CQlpQre
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Burn Rate (BR) and Tritium Breeding Ratio (TBR) are two important
parameters for self-sufficiency

Larger Tritium Breeding Ratios will A large Burn-up Fraction requires a
make-up for losses and produce excess smaller tritium inventory on hand
fuel for ne reactors

T T
TBR = bred BF = burnt
Tburnt Tburnt + Trecycle
Mostly agnostic to source of Fusion power core
14.1 MeV neutrons “performance” metric
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Why does it matter, who will care?

A: Now Handoff B: End game

Primarily Gov’t Commercial Plant
Funded R&D

When, how, and to whom?
\_ J

Fusion development goal: First pre-commercial demonstration plant
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The Tritium Extraction Facility (TEF) needed for a fusion power plant is
larger than has ever been built

~3 kg O - Annual Tritium Load at Darlington Tritium Removal Facility (Canada)

>56 kg - Annual Tritium Load at Tritium Extraction Plant for a 1 GWy,

Inflows of Tritium at an Extraction Plant:

1. Coolant Loop = DTRF currently extracts tritium from heavy water

2. Tritium breeding material = Savannah River Site (5500M) extracts tritium from spent
fuel rods. Limited experience extracting from liquid lithium.

3. Exhaust gas = Experience at tokamak experiments (JET in UK, TFTR at Princeton)

How will technology evolve? Is the right analogy air separation units at thermal power plants? Or as
large, one-off, expensive subsystems?
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Constraint: Mass flow rate / exhaust flow rate

- Constraint: exhaust and/or waste material cannot interfere with high-frequency
pulses

- What is the magnitude of exhaust and/or waste material envisioned?
- What level of vacuum is needed (rough, middle, or high vacuum)?

For the Cost Study:

- Dependency between mass transport — geometry — cost

CQlpQre
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Bill on 2012-01-31 at 13:59 said:
The hubris of man: attempting to create a tiny artificial sun in order to boil an
€gg.

QPG
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